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Solution 8

1. Let A = {ai;} be an n x n matrix. Show that
|Az| < Zagj |-
i7j

Solution. Let y = Ax. We have
yi:Zaij:nj, i:1,---,n.
J

By Cauchy-Schwarz Inequality,

il < [ ah [2 a5
j j

yi<y ahy af.
PR

Taking square,

Summing over ¢,
2 2 2
PRSI
i 1,3 J

and the result follows by taking root.

Note. This result was used in the proof of Proposition 3.5.

2. Let A = (a;;) be an n x n matrix. Show that the matrix I+ A is invertible if 3, . afj < 1.
Give an example showing that I + A could become singular when Zz j a?j =1.

Solution. Let ®(z) = Iz + Ax so that ¥(x) = Az for x € R™. By the previous problem,

V(1) = W(as)| = |A(x1 —a2)| <[> al; |a] -
i?j
Take v = ’/Zi,j a?j < 1. V¥ is a contraction and there is only one root of the equation

®(x) = 0 in the ball B,(0). However, since we already know ®(0) = 0, 0 is the unique root.
Now, we claim that I+ A is non-singular, for there is some z € R" satisfying (I + A)z = 0,
we can find a small number « such that az € B,(0). By what we have just shown, az =0
so z = 0, that is, I + A is non-singular and thus invertible.

The sharpness of the condition afj < 1 can be seen from considering the 2 x 2-matrix
A where all a;; = 0 except az = —1.

Note. See how linearity plays its role in the proof.

3. Let f: R — R be C% and f(z9) = 0, f/(z0) # 0. Show that there exists some p > 0 such

that
f(z)
f(x)’

Te=x— xe(fﬁo—P,fUO‘FP)a
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is a contraction. This provides a justification for Newton’s method in finding roots for an
equation.

Solution. 7'(z) = W Since f is C? and f(x¢) = 0, f'(z0) # 0, it follows that T

is C'! in a neighborhood of zg with T'(xg) = xo, 7" (x9) = 0 and there exists some p > 0
, 1
T (z)| < 30 € [zo — p, z0 + pl.

As aresult, T is a contraction in [zg — p, xo + p]. By Contraction Mapping Principle, there
is a fixed point for T. From the definition of T, this fixed point is a root for the equation

f(x)=0.

4. Consider the iteration
Tpt1 = azn(1 —xy,), 1 €[0,1] .

Find

(a) The range of « so that {z,,} remains in [0, 1] .
(b) The range of « so that the iteration has a unique fixed point 0 in [0, 1].

(c) Show that for a € [0, 1] the fixed point 0 is attracting in the sense: z,, — 0 whenever
xo € [O, 1}.

Solution. Let Tz = ax(1l — ). The max of T" attains at 1/2 so the maximal value is /4.
Therefore, the range of « is [0,4] so that 7" maps [0, 1] to itself. Next, 0 is always a fixed
point of T'. To get no other, we set z = ax(1—x) and solve for x and get z = (a—1) /. So
there is no other fixed point if a € [0, 1]. Finally, it is clear that 7" becomes a contraction
when a € [0,1), so the sequence {z,,} with z¢ € [0,1] , z, = T"x, always tends to 0 as
n — o0o. Although T is not a contraction when o = 1, one can still use elementary mean
(that is, {x,} is always decreasing,) to show that 0 is an attracting fixed point.

5. Show that every continuous function from [0, 1] to itself admits a fixed point. Here we
don’t need it a contraction. Suggestion: Consider the sign of g(z) = f(x) —x at 0,1 where
f is the given function.

Solution. Let f € C[0,1]. Clearly, if f(0) = 0, then 0 is a fixed point. So assume
f(0) # 0. Here we take f(0) > 0. Consider the continuous function g(z) = f(x) — z. We
have g(0) = f(0) > 0 and g(1) = f(1) — 1 < 0. If equality holds, then f(1) =1, 1is a
fixed point. If inequality holds, that is, g(1) < 0, by the mean-value theorem there is some
¢ € (0,1) such that g(¢) = 0, that is, f(§) —& =0, so £ is a fixed point. The case f(0) <0
can be handled similarly.

Note. This example shows that every continuous function from [0, 1] to itself, not only
contractions, admits a least one fixed point. (But not necessarily unique.) Similar result
holds for all continuous maps on a compact, convex subset in R" to itself. It is called
Brouwer’s fixed point theorem.

6. Let f be continuously differentiable on [a,b]. Show that it has a differentiable inverse if
and only if its derivative is either positive or negative everywhere. This is 2060 stuff.

Solution. =-. Let g be the inverse of f. When g is differentiable, we can use the
chain rule in the relation g(f(x)) = = to get ¢'(f(z))f'(x) = 1, which implies that f’(x)
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never vanishes. Since f’ is continuous, if f'(zg) > 0 at some xg, we claim f’ is positive
everywhere. Suppose f/(z1) < 0 at some x1, by continuity f’(z2) = 0 at some x5 between
xo and x1, contradiction holds. Hence f’ is positive everywhere. Similarly, it is negative
everywhere when it is negative at some point.

<. Let us assume [’ is always positive (the other case can be treated similarly.) Let
x < yin [a,b]. By the mean value theorem, there is some z € (x,y) such that f(y) —
f(x) = f'(2)(y —x) > 0, so f is strictly increasing. According to an old result in 2050,
a continuous, strictly increasing function maps [a,b] to the interval [f(a), f(b)] and its
inverse g is continuous. Then we can use the Carathedory Criterion in 2060 to show that
g is differentiable and, in fact, satisfies ¢'(f(z)) = 1/f'(z).

7. Consider the function )

1
f(z) = §$+xzsin;, x #0,

and set f(0) = 0. Show that f is differentiable at 0 with f’(0) = 1/2 but it has no local
inverse at 0. Does it contradict the inverse function theorem?

Solution. |f(z) — f(0) — (1/2)z| = |#®sin(1/z)| = O(x?), hence f is differentiable at 0
with f/(0) = 1/2. Let xp = 1/2km,yx = 1/(2km + 1), then f'(z) = —1/2, f'(yr) = 3/2.
Then it is clear that f is not injective in Iy = (yg,xx). Since any neighborhood of 0
must include contain some [j, this shows that f it has no local inverse at 0. It does not
contradict the inverse function theorem because f’ is not continuous at 0.

Note. This problem shows that the C'-condition is needed in the Inverse Function Theo-
rem.

8. Consider the mapping from R? to itself given by f(x,y) = = — 22, g(z,y) = y + 2y .

Show that it has a local inverse at (0,0). And then write down the inverse map so that
its domain can be described explicitly.

Solution. Let u = — 2% v = y + zy. The Jacobian determinant is 1 at (0,0) so there is

an inverse in some open set containing (0,0). Now we can describe it explicitly as follows.
From the first equation we have

C1+V1-—du

! 2
From u(0,0) = 0 we must have
1—+v1—-4u
r=——.
2
Then
v 2v

L I Y, v

We see that the largest domain in which the inverse exists is {(u,v) : u € (0,1/4),v € R}.

9. Let F be a continuously differentiable map from the open U C R™ to R™ whose Jacobian
determinant is non-vanishing everywhere. Prove that it maps every open set in U to an
open set, that is, F' is an open map. Does its inverse F~1 : F(U) — U always exist?

Solution. Let E be an open set in U. We need to show that F'(E) is open. Let yg € F(FE)
and g € E satisfy F(zg) = yo. By the Inverse Function Theorem (applied to F' : E —
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10.

R™), there are open sets V (in F) and W containing xog and yg respectively such that
F(V) =W. In particular, W C F(FE). Since W is open and contains yp, there is some
B, (yo) C W C F(E), so F(E) is open.

The inverse may not exist. Consider the map (r,6) — (rcosf,rsinf) in (r,6) € (0,00) xR,
whose Jacobian determinant is always nonzero. However, it has no inverse.

Consider the function

Wa,y) = (z —y°)(x = 3¢%), (2,y) € R%

Show that the set {(x,y) : h(z,y) = 0} cannot be expressed as a local graph of a C'-
function over the = or y-axis near the origin. Explain why the Implicit Function Theorem
is not applicable.

Solution. The Jacobian matrix of h is singular at (0,0), hence the Implicit Function
Theorem cannot apply. Indeed, h(z,y) = 0 means either x — 2 = 0 or x — 3y?> = 0. The
solution set of {(x,y) : h(x,y) = 0} consisting of two different parabolas passing the origin.



